How Fiber Optics Work Reprinted

How Are Optical Fibers Made?

Craig Freudenrich, Ph.D. “How Fiber Optics Work” 6 March 2001.  Now that we know how fiber-optic systems work and why they are useful — how do they make them? Optical fibers are made of extremely pure optical glass. We think of a glass window as transparent, but the thicker the glass gets, the less transparent it becomes due to impurities in the glass.

However, the glass in an optical fiber has far fewer impurities than window-pane glass. One company’s description of the quality of glass is as follows: If you were on top of an ocean that is miles of solid core optical fiber glass, you could see the bottom clearly.

Making optical fibers requires the following steps:

  1. Making a preform glass cylinder
  2. Drawing the fibers from the preform
  3. Testing the fibers

Making the Preform Blank

The glass for the preform is made by a process called modified chemical vapor deposition (MCVD).

In MCVD, oxygen is bubbled through solutions of silicon chloride (SiCl4), germanium chloride (GeCl4) and/or other chemicals. The precise mixture governs the various physical and optical properties (index of refraction, coefficient of expansion, melting point, etc.). The gas vapors are then conducted to the inside of a synthetic silica or quartz tube (cladding) in a special lathe. As the lathe turns, a torch is moved up and down the outside of the tube. The extreme heat from the torch causes two things to happen:

Lathe used in preparing the preform blank

  • The silicon and germanium react with oxygen, forming silicon dioxide (SiO2) and germanium dioxide (GeO2).
  • The silicon dioxide and germanium dioxide deposit on the inside of the tube and fuse together to form glass.
  • The lathe turns continuously to make an even coating and consistent blank. The purity of the glass is maintained by using corrosion-resistant plastic in the gas delivery system (valve blocks, pipes, seals) and by precisely controlling the flow and composition of the mixture. The process of making the preform blank is highly automated and takes several hours. After the preform blank cools, it is tested for quality control (indexof refraction).

Drawing Fibers from the Preform Blank

Once the preform blank has been tested, it gets loaded into a fiber drawing tower.

The blank gets lowered into a graphite furnace (3,452 to 3,992 degrees Fahrenheit or 1,900 to 2,200 degrees Celsius) and the tip getsm elted until a molten glob falls down by gravity. As it drops, it cools and forms a thread.

The operator threads the strand through a series of coating cups (buffer coatings) and ultraviolet light curing ovens onto a tractor-controlled spool. The tractor mechanism slowly pulls the fiber from the heated preform blank and is precisely controlled by using a laser micrometer to measure the diameter of the fiber and feed the information back to the tractor mechanism. Fibers are pulled from the blank at a rate of 33 to 66 ft/s (10 to 20 m/s) and the finished product is wound onto the spool. It is not uncommon for spools to contain more than 1.4 miles (2.2 km) of optical fiber.

Testing the Finished Optical Fiber

The finished optical fiber is tested for the following:

  • Finished spool of optical fiber
  • Tensile strength - Must withstand 100,000 lb/in2 or more
  • Refractive index profile - Determine numerical aperture as well as screen for optical defects
  • Fiber geometry - Core diameter, cladding dimensions and coating diameter are uniform
  • Attenuation - Determine the extent that light signals of various wavelengths degrade over distance
  • Information carrying capacity (bandwidth) - Number of signals that can be carried at one time (multi-mode fibers)
  • Chromatic dispersion - Spread of various wavelengths of light through the core (important for bandwidth)
  • Operating temperature/humidity range
  • Temperature dependence of attenuation
  • Ability to conduct light underwater - Important for undersea cables

­Once t­he fibers have passed the quality control, they are sold to telephone companies, cable companies and network providers. Many companies are currently replacing their old copper-wire-based systems with new fiber-optic-based systems to improve speed, capacity and clarity.

About the Author
FOC Industry News Reporting Fiber Optic Center has a team of technical experts and marketing strategists with decades of years in the field. This team contributes to the fiber, cable and specialty industries coverage through news, alerts, reports and general media information.
About Fiber Optic Center, Inc.
Fiber Optic Center, Inc., (FOC), is an international leader in distributing fiber optic components, equipment and supplies and has been helping customers make the best cable assemblies in the world for over two decades. Several areas of specialization and expertise, in which they are the industry leader, make them the preferred choice for many of the world’s fiber professionals. In these key technology areas, FOC is "at least as technical as the manufacturer" about the products they sell. Striving to "make the business part easy," they offer outstanding and personal customer service, low or no minimum purchase order values, and from-stock delivery on industry-leading products and technology. FOC is the industry connection to the most innovative optical products, technologies and technical experts who integrate their manufacturing knowledge and vast experience into customers' worldwide operations. @FiberOpticCntr

For further information contact:
Fiber Optic Center, Inc., 23 Centre Street, New Bedford, MA 02740-6322
Toll Free in US: 800-IS-FIBER or 800-473-4237 . Direct 508-992-6464. Email: sales@focenter.com or fiberopticcenter@focenter.com

For media contact:
Kathleen Skelton, Director of Strategic Marketing, C: 617-803-3014 . E: kskelton@focenter.com